How to Achieve Your EHS Goals with Health and Safety Software 11
- claspasscatabluese
- Aug 14, 2023
- 6 min read
Safety Scanner helps remove malicious software from computers running Windows 11, Windows 10, Windows 10 Tech Preview, Windows 8.1, Windows 8, Windows 7, Windows Server 2019, Windows Server 2016, Windows Server Tech Preview, Windows Server 2012 R2, Windows Server 2012, or Windows Server 2008 R2. For details, refer to the Microsoft Lifecycle Policy.
Electronic prescribing is now the norm in many countries. We wished to find out if clinical software systems used by general practitioners in Australia include features (functional capabilities and other characteristics) that facilitate improved patient safety and care, with a focus on quality use of medicines.
health and safety software 11
Seven clinical software systems used in general practice were evaluated. Fifty software features that were previously rated as likely to have a high impact on safety and/or quality of care in general practice were tested and are reported here.
The range of results for the implementation of 50 features across the 7 clinical software systems was as follows: 17-31 features (34-62%) were fully implemented, 9-13 (18-26%) partially implemented, and 9-20 (18-40%) not implemented. Key findings included: Access to evidence based drug and therapeutic information was limited. Decision support for prescribing was available but varied markedly between systems. During prescribing there was potential for medicine mis-selection in some systems, and linking a medicine with its indication was optional. The definition of 'current medicines' versus 'past medicines' was not always clear. There were limited resources for patients, and some medicines lists for patients were suboptimal. Results were provided to the software vendors, who were keen to improve their systems.
The clinical systems tested lack some of the features expected to support patient safety and quality of care. Standards and certification for clinical software would ensure that safety features are present and that there is a minimum level of clinical functionality that clinicians could expect to find in any system.
Software systems for e-prescribing have been available for two decades, however standards and certification processes for these systems have lagged behind development and use of the software. Currently there is little information for funders or users of these systems to assess how effectively a system supports healthcare safety and quality.
In Australia, general practitioners (GPs) have been using clinical software systems that include e-prescribing for more than 15 years, with rapid uptake encouraged by government incentives in the 1990s. These systems have been developed in an unregulated environment, with little evaluation of their impact on clinical practice or health outcomes. We wished to find out if current systems include features that facilitate improved patient safety and care, with a focus on quality use of medicines. Quality use of medicines is the judicious, effective and safe use of medicines, and in terms of clinical software functionality it encompasses the entire medication management process.
In previous work we identified a list of desirable software features (where feature includes functionality or other characteristic of a software system), with each feature being rated for its expected impact on safety, quality and usefulness to the clinician and the patient[7]. In this study the features were tested in seven clinical software systems. Here we report on the software testing process and the results for a subset of the features.
Of the 114 software features previously identified, 104 were tested in software (10 were classified as 'aspirational')[7]. In this paper we report on the results for the 50 features that were rated as likely to have a high impact on safety and/or quality of care, and that could be tested in software.
Test scripts were developed using clinical scenarios based on 11 imaginary patients visiting their GPs. For each of the features to be tested, one or more test criteria were developed. Each test script was prepared in a separate Excel worksheet and was designed to produce a logical flow for testing and to facilitate data entry; there were 660 executable steps and 350 test criteria in total for the 104 features. The test scripts were reviewed by a GP and a health informatician--they provided feedback on the content, format and clarity of the scripts. An extract from one of the test scripts is shown in Figure 1.
At the completion of testing for each script, the results were reviewed and compared between the two researchers. Where their scores were in agreement, the test results were accepted. Where there was disagreement, four researchers (ZA, AS, MS, MW) met to discuss the variation in results and reach a consensus decision, which in some cases required retesting. At the end of the test process, one of the researchers (MS) undertook a line-by-line review of all results to check the scores and to identify any results that were unclear, unexpected or inconsistent, and that required verification with an expert user or the software vendor.
A number of features could not be tested adequately within the test environment. A GP expert user of each system (nominated by the vendor of that system) was contacted in February 2009 to find out about implementation of these features in their system. The test scripts were recast as interview questions that required a yes/no response. A researcher interviewed each GP at their practice, requesting a demonstration on the computer or further details where applicable. The responses were recorded by hand. Expert users provided information on the processes for receipt of pathology results and incorporation of these results into patient records, use of messaging, availability of system logs and ease of software updates.
Test data were collated and the preliminary results were provided to each software vendor, with a request for feedback. They were informed that the preliminary results for their system would be reviewed based on their feedback, and that the scores would be revised if there was sufficient evidence to show that the system included any functionality in question. A face-to-face meeting or teleconference was held with representatives from each company in April 2009. Discussion focussed on features where the test results were unclear or where there was disagreement. The representatives provided a demonstration of the system and/or documentation of functionality to support any claims. Meeting notes were sent back to each vendor, with further comment invited by email.
The implementation of the 50 scored features in seven clinical software systems is shown in Figure 2 and Table 1. Figure 2 provides an aggregate view of the implementation of the features: of the 50 features, the number that were fully implemented in the 7 systems ranged from 17-31 features (34-62%), with 9-13 (18-26%) features being partially implemented, and 9-20 (18-40%) not implemented. Table 1 shows the results by individual feature. The software systems are not identified individually as our intention was to look at features across all systems and make general recommendations for improvement of clinical software.
Important safety features that were included in all or most systems were alerts for drug-drug interactions, drugs in pregnancy and allergies. Most systems displayed information about allergies and pregnancy and breastfeeding status throughout the consultation. All systems had reminders for new pathology results that were abnormal and for overdue pap smears, and warned the user when creating or opening a record where there was another patient with the same name in the system.
- Variable decision support for prescribing. Some systems provided decision support for therapeutic duplication (3 systems), drug-condition contraindications (3 systems), drug use in breastfeeding (3 systems) and renal impairment (2 systems). There was little or no decision support for harmful dosage regimens or for safety issues related to specific products, such as recent warnings issued by the Therapeutic Goods Administration. Several software vendors cited lack of viable access to suitable knowledge bases to implement some of these features.
- Limited access to evidence-based drug and therapeutic information. No system provided access to information from either of two key Australian medicines references--the Australian Medicines Handbook and Therapeutic Guidelines. These resources provide independent, evidence based drug information but at present they are not available in a format that can readily be incorporated into clinical software systems. In relation to drug dosage, all systems provided adult and child dosing information that was based on the Australian regulator-approved product information, however this information source has limitations as it does not include off-label indications and often does not include paediatric dosage.
- Linking a medicine with its indication was optional. Linking was possible in all systems but in no case mandatory. Linking is important so that other health providers know what the medicine is for when health information is communicated or shared, and for quality improvement activities eg, comparison of own prescribing versus best practice guidelines.
- Definition of 'current medicines' vs 'past medicines' was not always clear. Some systems moved a medicine from the 'current' to the 'past' list automatically after a certain period. This is a crucial component of a health record and there is no standard definition of 'current medicines' and how they should be handled in an electronic health record.
- Limited patient resources. All systems provided access to Australian consumer medicines information leaflets. Availability of other patient resources was variable, ranging from none at all to two systems with a large number of resources, including leaflets on specific medicines, health conditions and nutrition.
The seven clinical software systems tested in this study all included some important safety and quality features however there were also gaps and limitations, as outlined above. The scope and quality of decision support features were particularly variable--this followed from differences in the knowledge bases used, or in some cases differences in the way a knowledge base was incorporated in the system. Some recommended features could not be implemented at the time of the study, for example because there was no nationally accepted messaging standard or drug and disease terminology. 2ff7e9595c
Comments